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Abstract 
Our world is approaching a critical juncture in which key resources for life on the planet (energy, 
nutrients, water and soil) are becoming ever more subject to climate and other environmental pressures. 
Algal–bacterial communities will likely have important ecological significance for the future, as well as 
relevance for the algal biotechnology processes. They can be used for a variety of products e.g. food, 
feed, fertilizers, pigments, bioplastics, biodiesel, biogas, bioethanol, bio-hydrogen and bio-stimulants. 
They can be involved in wastewater treatment and reuse. Evidence on symbiotic communities of algal-
bacterial comunities points to the role of small (micro- and nano-sized) cellular particles (SCPs) shed by 
microorganisms and cells (extracellular vesicles, lipoproteins, antibody complexes, viruses) in their 
organization and evolution as a community. Combination of SCPs of natural origin and liposomes would 
circumvent robust cellular manipulation needed for isolation of natural SCPs which is expensive and time 
consuming and enable artificial nanocarriers to entrap biologically active molecules e.g. bio-stimulants. 
Employment of this nanotechnological strategy could generate efficient and reproducible biocompatible 
carriers for downstream applications.  
 
 

Mikroalgne združbe za zeleni prehod 
 
Povzetek 
Naš svet se približuje kritični točki, v kateri postajajo ključni viri za življenje na planetu (energija, hranila, 
voda, tla) vse bolj podvrženi podnebnim in drugim okoljskim pritiskom. Združbe alg in bakterij bodo 
verjetno imele pomemben ekološki pomen za prihodnost, zlasti v biotehnoloških postopkih alg. Iz alg 
lahko pridobivamo različne produkte kot na primer hrano, krmo, gnojila, pigmente, bioplastiko, biodizel, 
bioplin, bioetanol, biovodik in biostimulanse. Lahko se jih uporabi za čiščenje in ponovno uporabo 
odpadne vode. Dokazi o simbiotskih združbah alg in bakterij kažejo na pomembno vlogo majhnih (mikro 
in nano velikih) celičnih delcev (SCP-jev), ki jih izločajo mikroorganizmi in celice (zunajceličnih veziklov, 
lipoproteinov, protitelesnih kompleksov, virusov) pri organizaciji in razvoju združb mikroorganizmov. 
Kombinacija SCP-jev naravnega izvora in liposomov bi se izognila robustni celični manipulaciji, potrebni 
za izolacijo naravnih SCP-jev, ki je draga in dolgotrajna, in bi omogočila umetnim nano nosilcem, da 
ujamejo biološko aktivne molekule kot so npr. biostimulansi. Uporaba take nanotehnološke strategije bi 
lahko ustvarila učinkovite in ponovljive biokompatibilne nosilce za nadaljnje aplikacije.  
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UNSEEN MAJORITY 
Our world is approaching a critical juncture in which key resources for life on the planet (energy, 
nutrients, water and soil) are becoming even more a subject to climate and other environmental 
pressures. While the European Commission has specified nature-based solutions as likely means for 
understanding and managing the urban ecosystem’s equilibrium, there is also rising awareness that the 
responses of microorganisms are essential for achieving an environmentally sustainable future 
(Cavicchioli et al., 2019, Atanasova et al., 2021). To assess this urgent need, nature-based solutions 
should be approached at the microscopic level, to uncover the natural laws governing biosphere 
processes involving complex communities composed of the ‘unseen majority’ – the microorganisms that 
carry out much of the production, consumption, decomposition, and nutrient cycling within ecosystems 
(Zimmerman et al., 2014). Algae contribute approximately half of the global net primary production 
(Field et al., 1998) and with bacterioplankton dominate the aquatic ecosystem (Sarmento and Gasol, 
2012), influence the global carbon cycle and ultimately the whole climate. Algal–bacterial modes of 
interactions will likely have enormous ecological significance for the future, as well as relevance for algal 
biotechnologies (Ramanan et al., 2016). Furthermore, algae are known to produce a variety of 
compounds e.g. food, feed, fertilizers, pigments, bio-plastics, biodiesel, biogas, bioethanol, bio-
hydrogen and bio-stimulants. They can be involved in wastewater treatment and reuse. Moreover, 
these systems have remediation abilities through reduction, stabilization, sequestration, assimilation, 
detoxification, mineralization, and decomposition, and provide for a high level of biodiversity, stability 
and flexibility of ecosystems. They do not compete with food or other crops as they can be cultivated 
on arid and unhospitable land and can be harvested on large commercial scale in aqueous suspensions 
where sufficient light and carbon dioxide is available.  
Nature-based solutions for wastewater treatment with their ability for integrated resource 
management are promising for developing a circular economy in the urban environment (Langergraber 
et al., 2021). One such example is algal photobioreactors, most notably, high-rate algal ponds (HRAP), 
which rely on algae and bacterial communities to treat wastewater and produce biomass (Norvill et al., 
2016). Compared to activated sludge reactors used for treating wastewater, HRAPs have longer 
hydraulic retention times and a large surface area, i.e., 1 ha or more in full-size HRAP systems (Norvill 
et al., 2016, Craggs et al., 2012, Sutherland et al., 2020). In addition, they do not require active aeration 
since the algae produce O2 and organic acids needed by the bacteria, which contribute CO2 and nutrients 
for the algae (Norvill et al., 2016). The main advantage of photobioreactors is the production of nutrient- 
and energy-rich algal biomass that may be exploited in a variety of products (Brennan and Owende, 
2010; Park et al., 2011; Rahman et al., 2017). However, our understanding of nature-based solutions 
needs to progress from the technological unit level to the cellular community level since cellular 
communication plays a fundamental role in the homeostasis of complex biological systems where 
synchronization, cooperation, quick adaptation and specialization/differentiation of the cells occurs 
(Armingol et al., 2021; Combarnous et al., 2020; Jin et al., 2021).  
 
ALGAE ADDRESS THE PROBLEM OF CONTAMINANTS OF EMERGING CONCERN 
Contaminants of emerging concern (CECs) include active components of human and veterinary 
pharmaceuticals, illicit drugs, personal care products, pesticides, hormones, flame retardants, 
plasticizers and other compounds, as well as their metabolites and transformation products (TPs) 
(Noguera-Oviedo et al., 2016; Tolboom et al., 2019). However, their environmental occurrence and fate 
have been investigated only recently due to awareness of potential adverse ecological and human 
health impacts, although CECs may not be new in the environment (Yadav et al., 2021). CECs are typically 
present in the environment at trace levels, and only recent advances in analytical instrumentation have 
allowed their detection at low concentrations (ng/L and even pg/L) (Noguera-Oviedo et al., 2016). 
Bisphenols (BPs) are a group of CECs characterized by two hydroxyphenyl groups bound by a 
hydrocarbon bridge and otherwise containing diverse chemical groups, resulting in different 
physicochemical properties and consequent environmental behavior, making them suitable model 
compounds. BPs are monomers used to produce polycarbonate, epoxy resin, polysulfone, polyacrylate, 
polyetherimide, and as an additive in thermal paper, polyvinyl chloride and other products (Geens et 



al.,2011), and it was indicated that their emissions into wastewater are not negligible (Vehar et al., 
2021). Studies point toward BPs causing endocrine disruption and other toxic effects (e.g., reproductive 
toxicity), neurotoxicity and cytotoxicity which is concerning as they may cause ecological harm (Munoz 
et al., 2009). Wastewater represents the main influx of CECs to the environment due to inadequate 
removal during conventional wastewater treatment (Norvill et al., 2016; Tolboom et al., 2019; 
Sutherland et al., 2019). They may also pose a risk to humans when considering reusing treated 
wastewater products (e.g., reclaimed water and biomass) for activities such as agriculture. 
Microalgae photobioreactors are an alternative to conventional wastewater treatment (Škufca et al., 
2021). Biodegradation of CECs in microalgal photobioreactors results from the metabolism of 
microalgae and bacteria, either intracellularly or extracellularly (Maryjoseph et al., 2020). Co-metabolic 
biodegradation may be accomplished by non-specific enzymes produced to assimilate other organic 
compounds (Liu et al., 2021). Furthermore, microalgae often grow in co-culture with bacteria (Božič et 
al., 2021). Biodegradation of CECs may take place according to three scenarios: (1) microalgae do not 
directly degrade the compound but provide a favorable environment for bacteria, promoting 
biodegradation, (2) bacteria and microalgae both significantly and directly contribute to the 
biodegradation of the CEC and (3) microalgae and bacteria synergistically degrade the CEC, where one 
can degrade the intermediate products of the other or vice versa (Liu et al., 2021). Past experimental 
studies have shown that a co-culture of microalgae and bacteria is more efficient at removing organic 
pollutants than a single culture (Ji et al., 2018, Prosenc et al., 2021). Some bacterial strains in the native 
phycosphere (mini ecosystem-surrounding microalgal cell walls) may improve the growth of microalgae 
C. vulgaris (e.g. Flavobacterium, Hyphomonas, Rhizobium, Sphingomonas). In contrast, others may be 
inhibitory (Microbacterium and Exophiala), illustrating that not all interactions need to be mutualistic. 
It was shown that a co-culture of Scenedesmus sp. and Paenibacillus sp. was more successful than axenic 
culture in removing organic contaminants, total dissolved solids (TDS), COD and heavy metals, as well 
as showing the highest reduction in cytotoxicity and genotoxicity (Kumari et al., 2016). These studies 
point to interspecies interactions between bacteria and microalgae, which may impact a 
photobioreactor’s performance. 
 Outcomes of the Smart Use of Resources priority area of application are development of new materials, 
products, applications and services supporting smart use of resources in the circular economy, 
development of technological and biological materials, systems for preventing waste generation, 
systems for quality recycling (upcycling) and re-use and efficient use of resources including water, 
development of technologies, components and systems for efficient energy use and for the acquisition 
of alternative fuels, development and production of components and systems for utilising renewable 
energy sources (energy conversion, distribution and storage).  
 
SMALL CELLULAR PARTICLES AS MEDIATORS OF CELL – CELL COMMUNICATION 
There is a critical need for basic science and engineering research that would lead to improvements in 
scalable technologies for biomanufacturing of delivering particles (Estes et al., 2022) and enrichment of 
their inner compartment with biogenic molecules (Hermann et al., 2021). Cell - cell communication 
could be key in opening the “black box” of basic ecological elements and could serve as a lever to 
equilibrate the state of the living systems. The algae–bacteria interactions are considered promising for 
biotechnology, as many recent studies have shown a positive effect of algae–bacteria symbiosis on algal 
growth and flocculation processes, which are the essential steps in algal biotechnology (Fuentes et al. 
2016). Symbiotic microalgae–bacteria consortia could be utilized to improve microalgal biomass 
production and to enrich the biomass with valuable chemical and energy compounds.  
Evidence on symbiotic communities of microorganisms points to the role of small (micro- and nano-
sized) cellular particles (SCPs) shed by microorganisms and cells in their organization and evolution as a 
community (Figure 1). It is now acknowledged that cells release various types of SCPs (extracellular 
vesicles (EVs), antibody complexes, lipoproteins, and other particles) capable of transporting different 
substances, such as proteins, lipids, sugars and nucleic acids (Gill et al., 2019). SCPs are free to move 
and interact with close by or distant cells. They carry different cargo and can mediate interaction within 
the same organism or with different organisms and play an important role in the above environmental 



issues (Thery et al., 2018). As the interaction is based on the mechanism that is shared between all life 
domains – i.e. fission and fusion of biological membranes – it offers possibility of controlled intervention 
and presents the base of our mechanism for climate resilience. EVs have been implicated in many 
aspects of cell physiology, such as stress response, intercellular competition, lateral gene transfer (via 
RNA or DNA), pathogenicity and detoxification (Gill et al., 2019). Although microalgal SCPs were first 
observed in the 1970s (Aaronson, 1971; McLean et al., 1974), and have recently become a subject of 
further interest (Bozic et al., 2022; Picciotto et al., 2021; Adamo et al., 2021), their roles in communities 
are not yet fully understood. It is therefore of utmost importance to enhance our understanding of 
intercellular communication mechanisms, and we expect that this would have implications across 
multiple fields of science. Intercellular interactions at the microscopic scale connect different life 
domains and thereby enable application of the same basic principles and similar methods for supporting 
the microalgal communities as well as processing of natural sources for different uses in maintenance 
of health (Romolo et al., 2022).  
 

 
Figure 1. Scanning electron micrograph of isolated SCPs from conditioned media of microalgae 
Phaeodactylum tricornutum (A) and microalgae with numerous bacteriae in the culture (B). A: from 
(Kralj-Iglič et al., 2022). The sample was prepared for SEM imaging (B) as described in (Božič et al., 2022).    
 
Natural sources are known to be rich with bioactive compounds (e.g. lipids, terpenes, polyphenols, 
flavonoids, etc.), with some of these substances having antibacterial and antioxidant properties which 
are likely to be captured and transported by SCPs within the body (Jeran et al., 2023). Since SCP field is 
a relatively new rapidly developing field the key mechanisms are not yet fully understood and the 
methods for SCP harvesting, and characterization and extraction of the compounds are not yet being 
full explored. Furthermore, interpretation of the results on new substances in connection with other 
parameters of the medium urgently need improvements and clarifications. As natural sources contain 
molecules that proved to have beneficial effects on health, it is indicated that SCP production in these 
sources should be artificially increased. Formation of hybrid particles by processing of material from 
natural sources and lipids (hybridosomes) is expected to capture the substances of the natural sources 
with health-beneficial effects, increase the yield (e.g. by bio-stimulants) and render material with better 
controlled properties. In order to be up-taken by cells, particles should be small (i.e. submicron-sized). 
In extrusion, the vesicles pass several times (extrusion cycles) through a membrane of defined pore size, 
to render the size distribution more uniform (Meure et al., 2008; Olson et al., 1979). Nebulization is a 
particularly interesting route of administration. In the context of lung damage, given its excellent 
performance in terms of the bioavailability, the drug is delivered to the targeted cells in the lung (Frolich, 
2021). Also, intranasal administration of EVs has been established as an effective and reliable way to 
bypass the blood-brain barrier and deliver drugs to the central neural system (Herman et al., 2021).  
 



Communities of microorganisms managed or functionally enhanced through a greater understanding 
of SCP communication have a number of extraordinary advantages, key among them being scalability 
and cost. While central wastewater treatment, and bioremediation often require large-scale investment 
and equipment, nature-based solutions may be much cheaper and easier to scale, including to the 
individual household level. From a spatial perspective one can distinguish between macro and micro 
remediation methods and contexts, and also along the social-ecological, natural and technical axes 
differentiating resilience management at city and household scales, while all scales are governed by the 
mechanisms at the cellular level. Extractions with liquids in the subcritical (water) and supercritical (CO2) 
state are currently among the most intensively studied technologies of so-called green chemistry. In 
addition to high ecological (non-toxicity and non-flammability of solvents) and economic (availability of 
solvents) acceptability, they are most distinguished by new usability potentials, including in the areas of 
functional foods, cosmetic and pharmaceutical ingredients. Macro and micronutrients as well as the 
antioxidants present in microalgae could in the future provide food or food additives. Communal 
wastewater containing significant amount of phosphorus and nitrogen, which are a major cause of 
eutrophication in water bodies could be bioremediated using microalgae, producing biomass in the 
process. Microalgae are a reservoir for identifying and extracting biologically active substances like 
pigments, vitamins, phenolics, squalene, mycosporine-like amino acids, all known as antioxidant agents, 
as well as phytosterols, with the potential to act as pharmaceuticals, nutritional supplements, and 
cosmetics.  
 
HYBRIDOSOMES FOR SCALABLE DELIVERY TO CELLS 
Efforts are being invested into development of methods for harvesting and characterization of nano-
sized particles, however, a golden standard method has not yet been acknowledged. Suspensions of 
liposomes are dynamic systems subjected to self-assembly according to the minimization of the free 
energy. They are not particles with fixed identity and are prone to transformations of shape, size, and 
composition during the processing of samples. By appropriate selection of the cells from which SCPs 
derive, various conjugating targeting moieties have been developed (Hermann et al., 2021) e.g. SCPs 
from natural sources, artificial vesicles produced from lipids (liposomes) and their combinations (Piffoux 
et al., 2018). Hybridosomes mimic natural ones in terms of biological activity but can be synthesized in 
higher amounts and filled intentionally with specific and desirable cargo (Maurer et al., 2001, Belliveau 
et al., 2012). Combination of vesicles of natural origin and synthetic ones would circumvent robust 
cellular manipulation needed for isolation of natural extracellular particles (Belliveau et al., 2012, 
Marcus et al., 2013) (which is usually expensive and time consuming) and enable artificial nanocarriers 
to entrap biologically active molecules (Mashima and Takada, 2022). Employment of this 
nanotechnological strategy could generate efficient and reproducible biocompatible carriers for 
downstream applications. The idea is to enclose the natural compounds into vesicles composed mainly 
of artificially added lipids.  

CONCLUSIONS 
Microalgae are amazing creatures, which engineer their composition to adapt to the surroundings. 
Some algae can swim hundreds of their lengths in a second for the ability of their flagella. They can drop 
the flagella and build them again in hours. They have a high ability to duplicate their number. Their 
communities can dwell in symbiosis with the urban environment, where they can provide valuable 
presence of living beings and aesthetic pleasure for their colours. However, the algal communities and 
their communication with themselves and other microorganisms remain the most important element 
to benefit from their capacity to cope with a variety of environmental stress factors while producing 
bioactive substances.  
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